A curve C has equation: x^3+2xy-x-y^3-20=0. Find dy/dx in terms of x and y.

First we need to make sure we understand implicit differentiation. As we are differentiating with respect to x, y has to be treated differently, this is because it could be anything from a constant to a function of x say f(x). Thus we don't know what its derivative with respect to x is but we do know how to represent it; as dy/dx. So to answer this question we will use the product rule along with what I have just described. For instance take the 2xy term, this will give an implicit differentiation of 2y +2x(dy/dx). Using this idea we can differentiate the original equation term by term to get 3x^2+2y+2x(dy/dx)-1-3y^2(dy/dx)=0. Isolate the (dy/dx) terms to get (2x-3y^2)(dy/dx)=1-2y-3x^2. Divide through (2x-3y^2) to get (dy/dx)=(1-2y-3x^2)/(2x-3y^2) which is the final answer.

MM
Answered by Martin M. Maths tutor

6037 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

i) It is given that f(x)=(-5-33x)/((1+x)(1+5x)), express f(x) in the form A/(1+x) + B/(1+5x) where A,B are integers. ii) hence express the integral of f(x) between x=3 and x=0 in the form (p/q)ln4 where p,q are integers.


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.


find dy/dx where y = a^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning