Prove that "6^n + 9" is divisible by 5 for all natural numbers.

First assess that the initial case of where n = 1 is true. In this case, 6+9=15=53, so we can see that the case is true.We can then assume that 6k+9 is a multiple of 5, so we can let 6k+9 = 5A for some A in the natural numbers. We then consider the case of n = k+1, so consider 6k+1+96k+1+9 = 66k+9 = (6k+9) + (5*6k) = 5(A+6k) So it must be a multiple of 5The problem is shown true for the case of n = 1, and by assuming it is true for some k, it is shown to be true for the case n = k+1. So by the principle of mathematical induction it is true for all natural numbers n.

Related Further Mathematics A Level answers

All answers ▸

Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


z = 50 / (3+4i). What is z in a+bi form?


How do I draw any graph my looking at its equation?


Find all square roots of the number 3 + 4i.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences