Prove that "6^n + 9" is divisible by 5 for all natural numbers.

First assess that the initial case of where n = 1 is true. In this case, 6+9=15=53, so we can see that the case is true.We can then assume that 6k+9 is a multiple of 5, so we can let 6k+9 = 5A for some A in the natural numbers. We then consider the case of n = k+1, so consider 6k+1+96k+1+9 = 66k+9 = (6k+9) + (5*6k) = 5(A+6k) So it must be a multiple of 5The problem is shown true for the case of n = 1, and by assuming it is true for some k, it is shown to be true for the case n = k+1. So by the principle of mathematical induction it is true for all natural numbers n.

Answered by Further Mathematics tutor

3580 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you sketch the graph of y=(x-1)/(x+1)?


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


Give the general solution of the second order ODE dy2/d2x - 4dy/dx + 3 = 0


How do I differentiate tan(x) ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning