How to differentiate y = xcos(x)

You would first of all establish which differentiation rule is required, for this question it would be useful to use the product rule splitting xcos(x) into x multiplied by cos(x). We can label u = x and v = cos(x). Then differentiate u with respect to x to obtain, du/dx = 1. and differentiate v with respect to x to obtain dv/dx = -sin(x). Now using the product rule: dy/dx = v(du/dx) + u(dv/dx), we can plug in our previously calculated values u,v,(du/dx),(dv/dx) to obtain the answer: dy/dx = cos(x)(1) + x(-sin(x)) = cos(x) -xsin(x).

SC
Answered by Sophie C. Maths tutor

5705 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3 + x^2 -2x^3. Find the two stationary points of this curve.


Sketch the curve y = (x^2 - 9)(x - 2)


Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Find the area enclosed between the curves y = f(x) and y = g(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences