How to differentiate y = xcos(x)

You would first of all establish which differentiation rule is required, for this question it would be useful to use the product rule splitting xcos(x) into x multiplied by cos(x). We can label u = x and v = cos(x). Then differentiate u with respect to x to obtain, du/dx = 1. and differentiate v with respect to x to obtain dv/dx = -sin(x). Now using the product rule: dy/dx = v(du/dx) + u(dv/dx), we can plug in our previously calculated values u,v,(du/dx),(dv/dx) to obtain the answer: dy/dx = cos(x)(1) + x(-sin(x)) = cos(x) -xsin(x).

Answered by Sophie C. Maths tutor

5335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=x^3-6x+3. i)Differentiate f(x) to find dy/dx. ii) Given that dy/dx = 12, find the value of x.


(4-2x)/(2x+1)(x+1)(x+3) = A/(2x+1)+B/(x+1)+C(x+3) Find the values of the constants A, B and C


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


y = 2t^2, and x = 3t^3 - 2. Find dy/dx in terms of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences