How to differentiate y = xcos(x)

You would first of all establish which differentiation rule is required, for this question it would be useful to use the product rule splitting xcos(x) into x multiplied by cos(x). We can label u = x and v = cos(x). Then differentiate u with respect to x to obtain, du/dx = 1. and differentiate v with respect to x to obtain dv/dx = -sin(x). Now using the product rule: dy/dx = v(du/dx) + u(dv/dx), we can plug in our previously calculated values u,v,(du/dx),(dv/dx) to obtain the answer: dy/dx = cos(x)(1) + x(-sin(x)) = cos(x) -xsin(x).

SC
Answered by Sophie C. Maths tutor

6851 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation (k+1)x^2+12x+(k-4)=0 has real roots. (a) Show that k^2-3k-40<=0. (b) Hence find the possible values of k.


Differentiate with respect to x: y=2^x


Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.


Find partial fractions of : (x+7) / ((x-3)(x+1)^2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning