Find the integral of: sin^4(x)*cos(x)dx

This is a standard integral of the type f'(x)*f(x)n. To find the solution, we trial d/dx(f(x)n+1). d/dx(sin5(x)) = 5sin4(x)cos(x). this looks similar to the integral we were asked to solve, apart from a factor of 5. so we multiply by 5 inside the integral, and divide by 5 outside the integral. now that the inside of the integral looks like 5sin4(x)cos(x), we know this integrates into sin5(x). so the solution is (1/5)*sin5(x)

Answered by Maths tutor

4869 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.


What is differentiation and how is it done?


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Using the product rule, differentiate y=(2x)(e^3x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences