Find the integral of: sin^4(x)*cos(x)dx

This is a standard integral of the type f'(x)*f(x)n. To find the solution, we trial d/dx(f(x)n+1). d/dx(sin5(x)) = 5sin4(x)cos(x). this looks similar to the integral we were asked to solve, apart from a factor of 5. so we multiply by 5 inside the integral, and divide by 5 outside the integral. now that the inside of the integral looks like 5sin4(x)cos(x), we know this integrates into sin5(x). so the solution is (1/5)*sin5(x)

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


How do I use the product rule for differentiation?


Integrate 4/x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences