Find the integral of: sin^4(x)*cos(x)dx

This is a standard integral of the type f'(x)*f(x)n. To find the solution, we trial d/dx(f(x)n+1). d/dx(sin5(x)) = 5sin4(x)cos(x). this looks similar to the integral we were asked to solve, apart from a factor of 5. so we multiply by 5 inside the integral, and divide by 5 outside the integral. now that the inside of the integral looks like 5sin4(x)cos(x), we know this integrates into sin5(x). so the solution is (1/5)*sin5(x)

Answered by Maths tutor

5622 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality x < 4 - |2x + 1|.


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Find dy/dx where y= x^3(sin(x))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning