Find the coordinates of the stationary point of y = x^2 + x - 2

At a stationary point, the gradient/slope of the graph is 0. To find the gradient of y, we differentiate with respect to x.This gives us dy/dx = 2x + 1. Since we want to find where the gradient is 0, we set dy/dx = 2x + 1 = 0. Solving we find that x = -1/2.We now have the x coordinate of the stationary point, we now need to find the y coordinate. We plug this value back into our original equation y = x^2 + x - 2, giving us (-1/2)^2 + (-1/2) - 2 = -9/4.Therefore, the co-ordinates of the stationary point are (-1/2, -9/4).

Answered by Martin C. Maths tutor

4149 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^3x + 1 in the form3^y ?


Given that x = ln(sec(2y)) find dy/dx


A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences