Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?

The key observation here is that the Earth is spinning (angular velocity w) and so are you. The scale will give one number or another depending on the force that you exert on it, and by Newton's 3rd Law that is equal and opposite to the force that it exerts on you (i.e the normal force). On the north pole you are sitting just on the axis of rotation, so the centripetal force is zero. However, on the equator the centripetal force is no longer zero, so the normal has to be slightly smaller than your weight to keep you rotating. Bringing in some maths: Centripetal force= Your weight - normal N=mg-mRw^2=mg(1-rw^2/g)= what the scale "thinks" you weight. Hence, the readings are different by a factor of (1-rw^2/g)

Answered by Javier P. Physics tutor

1731 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A simple pendulum is an example of a system in Simple Harmonic Motion, using conservation laws find a) the greatest speed of the bob and b) the magnitude of speed at a height of 1.0cm above the minimum point. Given it starts at rest, at a height of 20cm.


Explain how an acceleration-displacement graph could be used to determine the frequency of oscillation of a metal plate.


How to solve horizontally-launched projectile motion problems using equations of motion?


An object with weight w is suspended from two strings at angles θ1 and θ2 to the vertical and with tensions T1 and T2. How would you resolve the vertical and horizontal forces?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences