Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?

The key observation here is that the Earth is spinning (angular velocity w) and so are you. The scale will give one number or another depending on the force that you exert on it, and by Newton's 3rd Law that is equal and opposite to the force that it exerts on you (i.e the normal force). On the north pole you are sitting just on the axis of rotation, so the centripetal force is zero. However, on the equator the centripetal force is no longer zero, so the normal has to be slightly smaller than your weight to keep you rotating. Bringing in some maths: Centripetal force= Your weight - normal N=mg-mRw^2=mg(1-rw^2/g)= what the scale "thinks" you weight. Hence, the readings are different by a factor of (1-rw^2/g)

Answered by Javier P. Physics tutor

1886 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the definition of a moment?


A ball is launched upwards at 30 degrees to horizontal with a velocity of 20 metres per second, how far does it travel before landing? (no air resistance)


An infared wave has a wavelength of 1.5 x10^–6 m. The speed of this wave is 2.2 × 10^8 m/s. Calculate the frequency of the wave. Give your answer in standard form and to 2 significant figures.


A transmitter from a researcher's boat sends a signal to the seabed of waves speed 300m/s and it takes 5 seconds for the signal to return back to the boat. Calculate the depth of the sea there.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences