A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?

For this question, we will use moments. A moment is defined as:Moment = force x perpendicular distance from pivotHere, the moment of the 30kg mass which acts anti-clockwise through the pivot. The moment is:M30kg = 30g x 5mThe force is 30g as F=ma with g being the acceleration under gravity. The perpendicular distance is 5m as the beam is pivoted in the centre and the mass is placed at the end of the beam.The moment of the 50kg mass is:M50kg = 50g x DWhere D is the distance from the pivot. Since we know for the beam to be balanced, the clockwise moment must be equal to the anti-clockwise moment, we can say:M30kg = M50kg30g x 5 = 50g x DWe can cancel out the g factor as it is present on both sides of the equation.30 x 5 = 50 x DD = (30 x 5)/50 = (30 x 1)/5 = 3mSo the mass must be placed 3m from the pivot which is also 8m from the end which the 30kg mass is placed on.

Answered by Joseph M. Physics tutor

2585 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?


A ball is rolled, travelling 10 m north in 5s, then 10 m east in 10s. What is the total distance and average speed of the ball? What is the total displacement and average velocity of the ball?


Explain how fluorescent tubes work


Why is the centripetal force necessary for circular motion?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences