A 10m long uniform beam is pivoted in its centre. A 30kg point mass is placed on one end of the beam. Where must a 50kg mass be placed in order to balance the beam?

For this question, we will use moments. A moment is defined as:Moment = force x perpendicular distance from pivotHere, the moment of the 30kg mass which acts anti-clockwise through the pivot. The moment is:M30kg = 30g x 5mThe force is 30g as F=ma with g being the acceleration under gravity. The perpendicular distance is 5m as the beam is pivoted in the centre and the mass is placed at the end of the beam.The moment of the 50kg mass is:M50kg = 50g x DWhere D is the distance from the pivot. Since we know for the beam to be balanced, the clockwise moment must be equal to the anti-clockwise moment, we can say:M30kg = M50kg30g x 5 = 50g x DWe can cancel out the g factor as it is present on both sides of the equation.30 x 5 = 50 x DD = (30 x 5)/50 = (30 x 1)/5 = 3mSo the mass must be placed 3m from the pivot which is also 8m from the end which the 30kg mass is placed on.

JM
Answered by Joseph M. Physics tutor

3228 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


What is the 'centre of gravity' of an object and how do I calculate it?


If a star with a radius of 600000km has a surface temperature of 6000K, calculate its luminosity


What is the escape velocity of an object leaving a planet mass M, radius R?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning