Solve the simultaneous equations: 5x + y = 21, x - 3y = 9

Two equations 1) 5x + y = 21, 2) x - 3y = 9. Eliminate x or y by manipulating equations 1 or 2. Equation 3 = equation 2 x 5 = 5(x-3y) = 5(9) 3) 5x - 15y = 45. Equations 3 & 1 both have 5x's so we can subtract equation 1 from equation 3 to get a new equation with only y's, no x's.(5 - 5)x + (-15 - 1)y = 45 - 21, which evaluates to -16y = 24, giving y = -24/16 = -3/2 = -1.5. This value of y satisfies equations 1 & 2. Substitute this value into 1 or 2 to find x: 5x + (-1.5) = 21, 5x = 21 - -1.5 = 22.5, x = 4.5. So x = 4.5 & y = -1.5 are solutions to the pair of simultaneous equations.

Answered by Jason L. Maths tutor

2879 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of a curve is y = ax^2 + 3x + c where a and b are integers. The curve has a minimum point at (1,1), find a and c


A particle P of mass 0.4 kg is moving under the action of a constant force F newtons. Initially the velocity of P is (6i – 27j) m s−1 and 4 s later the velocity of P is (−14i + 21j) m s−1 . Find, in terms of i and j, the acceleration of P.


3kg of meat costs £54, Nina buys 2 kg of the meat. Work out how much Nina pays. (non-calculator)


How do you calculate ratios? Example question: 'White paint costs £2.80 per litre, Blue paint costs £3.50 per litre, White paint and blue paint are mixed in the ratio 3:2. Work out the cost of 18 litres of the mixture [4 marks]' AQA Mathematics (8300)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences