f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?

For f(x) to be an increasing function at x, the derivative of f(x) must be greater than 0. So, the answer to this question will be revealed by solving the equation f'(x) > 0 for x.By differentiating the terms of the polynomial f(x), we get f'(x) = 6x2+12x-18 > 0. To find the range(s) of x for which this is true, we can solve the quadratic 6x2+12x-18 = 0 to find the points at which it either starts or stops becoming true, and then use what we know about the graph to find the ranges.By first removing common factors from both sides:6(x2+2x-3) = 6(0)x2+2x-3 = 0and then factorising the quadratic:(x+3)(x-1) = 0we can get the solutions:x = -3, x = 1.So, by looking at the graph we can see that the regions we need are before the first intersection point (x = -3) and after the second (x = 1), so we get the solutions:x < -3, x > 1.

NW
Answered by Nikhil W. Further Mathematics tutor

4556 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Find the coordinates of the stationary points on the curve y=x^5 -15x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning