f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?

For f(x) to be an increasing function at x, the derivative of f(x) must be greater than 0. So, the answer to this question will be revealed by solving the equation f'(x) > 0 for x.By differentiating the terms of the polynomial f(x), we get f'(x) = 6x2+12x-18 > 0. To find the range(s) of x for which this is true, we can solve the quadratic 6x2+12x-18 = 0 to find the points at which it either starts or stops becoming true, and then use what we know about the graph to find the ranges.By first removing common factors from both sides:6(x2+2x-3) = 6(0)x2+2x-3 = 0and then factorising the quadratic:(x+3)(x-1) = 0we can get the solutions:x = -3, x = 1.So, by looking at the graph we can see that the regions we need are before the first intersection point (x = -3) and after the second (x = 1), so we get the solutions:x < -3, x > 1.

NW
Answered by Nikhil W. Further Mathematics tutor

4549 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the following simultanious equations: zy=28 and 2z-3y=13


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


If z=4+i, what is 1/z? (in the form a+bi)


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning