Differentiate f(x) = x sin(x)

In this question, we have the product of two separate terms, so we will choose to use the product rule for this question. Recall, for f(x) = u(x) v(x): f'(x) = u'(x) v(x) + u(x) v'(x). Here, we can set u(x) = x and v(x) = sin(x). Differentiating both terms with respect to x, we obtain u'(x) = 1 and v'(x) = cos(x). Using the product rule, this gives us:f'(x) = 1 * sin(x) + x cos(x) = sin(x) + x cos(x)

AS
Answered by Andrea S. Maths tutor

2845 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the natural logarithm ln(x)?


When would you apply the product rule in differentiation and how do you do this?


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


A curve is given by the equation y = (1/3)x^3 -4x^2 +12x -19. Find the co-ordinates of any stationary points and determine whether they are maximum or minimun points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning