Differentiate f(x) = x sin(x)

In this question, we have the product of two separate terms, so we will choose to use the product rule for this question. Recall, for f(x) = u(x) v(x): f'(x) = u'(x) v(x) + u(x) v'(x). Here, we can set u(x) = x and v(x) = sin(x). Differentiating both terms with respect to x, we obtain u'(x) = 1 and v'(x) = cos(x). Using the product rule, this gives us:f'(x) = 1 * sin(x) + x cos(x) = sin(x) + x cos(x)

AS
Answered by Andrea S. Maths tutor

3038 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using mathematical induction, prove De Moivre's Theorem.


Integrate cos^2x + cosx + sin^2x + 3 with respect to x


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning