Integrate (x+4)/(x^2+2x+2)

At first glance, this may look like an inverse trig integral but as the top contains an x term, we must use a different method.

First, rewrite the top in two parts, one that is a multiple of the derivative of the bottom and one that is just a number. In this case the derivative of the bottom is 2x+2 so rewrite as (2x+2)/2+3.

Now split the fraction in two: (2x+2)/2(x2+2x+2)+3/(x2+2x+2). The first part is now a log integral integrating to 1/2 ln(x2+2x+2).

To integrate the second we must complete the square on the bottom. x2+2x+2=(x+1)2+1. Now using the substitution u=x+1, dx=du, we can see that the second part is an inverse tan integral integrating to arctan(x+1).

The overall integral is therefore 1/2 ln(x2+2x+2) + arctan(x+1).

ZT
Answered by Zac T. Further Mathematics tutor

5087 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


Find the first three non-zero terms of the Taylor series for f(x) = tan(x).


How to approximate the Binomial distribution to the Normal Distribution


What are the different forms of complex numbers and how do you convert between them?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning