Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2

Use the auxiliary equation k2-5k+6=0. Solving this gives roots k=2 and k=3, which are real and distinct roots. This means that the complementary function is of the form y=Ae^(k1x)+Be^(k2x), where k1 and k2 are roots of the auxiliary equation and A and B are real constants. Therefore the complementary function for this differential equation is y=Ae2t+Be3t.

SM
Answered by Sam M. Further Mathematics tutor

2342 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


How does proof by mathematical induction work?


MEI (OCR) M4 June 2006 Q3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning