Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2

Use the auxiliary equation k2-5k+6=0. Solving this gives roots k=2 and k=3, which are real and distinct roots. This means that the complementary function is of the form y=Ae^(k1x)+Be^(k2x), where k1 and k2 are roots of the auxiliary equation and A and B are real constants. Therefore the complementary function for this differential equation is y=Ae2t+Be3t.

Related Further Mathematics A Level answers

All answers ▸

Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)


How to determine the rank of a matrix?


How do I differentiate tan(x) ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences