Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.

We want to simplify this equation to one that we know how to solve. If we let ((z+1)/z) = w, then we need to solve w^6 = 1, which is more familiar. Now we try to find the modulus and argument of w. w = re^(iθ) so by De Moivre's Theorem we have (r^6)(e^(i6θ)) = 1. If two complex numbers are equal then their moduli must be equal so r^6 = 1. Then r = 1 since r is greater than or equal to zero for any complex number; i.e. r cannot equal -1. The argument of a complex number is not unique so 1 = e^(i(0)) = e^(i(2kπ)) for any integer k. This is easiest to understand graphically. The argument of the product of two complex numbers is the sum of their individual arguments so multiplying by e^i(2π) effectively rotates the complex number by 2π radians, so it is unchanged. So w^6 = e^(i(2kπ)) so w = e^i((2kπ)/6) so (z+1/z) = e^i((kπ)/3). Rearranging, z = 1/(e^((ikπ)/3)-1) = 1/(cos(kπ/3)-1+isin(kπ/3)). Now we need to substitute values of k to find as many unique values of z as possible. Substituting six consecutive values of k is sufficient since the seventh will give the same value of z as the first. If we do this (using a calculator) for k = 0, 1, ..., 5 we get five unique values of z whose real part is -1/2. So the roots of ((z+1)/z)^6 = 1 lie on the straight line Re(z) = -1/2.

Answered by Further Mathematics tutor

3391 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


Integrate f(x) = 1/(1-x^2)


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences