Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n

We make use of De Moivre's Theorem which states that (cos(θ)+isin(θ))^n=cos(nθ)+isin(nθ).z^n-1/z^n=cos(nθ)+ isin(nθ)-cos(-nθ)- isin(-nθ)=cos(nθ)+ isin(nθ)-cos(nθ)+ isin(nθ) (by trig relationships)=2isin(nθ)Similarly z^n+1/z^n=cos(nθ)+ isin(nθ)+cos(-nθ)+isin(-nθ)=cos(nθ)+ isin(nθ)+cos(nθ)- isin(nθ) (by trig relationships)=2cos(nθ)

BS
Answered by Bogosi S. Further Mathematics tutor

5665 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


Prove that sum(k) from 0 to n is n(n+1)/2, by induction


How can we describe complex numbers ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning