Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n

We make use of De Moivre's Theorem which states that (cos(θ)+isin(θ))^n=cos(nθ)+isin(nθ).z^n-1/z^n=cos(nθ)+ isin(nθ)-cos(-nθ)- isin(-nθ)=cos(nθ)+ isin(nθ)-cos(nθ)+ isin(nθ) (by trig relationships)=2isin(nθ)Similarly z^n+1/z^n=cos(nθ)+ isin(nθ)+cos(-nθ)+isin(-nθ)=cos(nθ)+ isin(nθ)+cos(nθ)- isin(nθ) (by trig relationships)=2cos(nθ)

BS
Answered by Bogosi S. Further Mathematics tutor

5650 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How can the integrating factor method be derived to give a solution to a differential equation?


Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning