Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n

We make use of De Moivre's Theorem which states that (cos(θ)+isin(θ))^n=cos(nθ)+isin(nθ).z^n-1/z^n=cos(nθ)+ isin(nθ)-cos(-nθ)- isin(-nθ)=cos(nθ)+ isin(nθ)-cos(nθ)+ isin(nθ) (by trig relationships)=2isin(nθ)Similarly z^n+1/z^n=cos(nθ)+ isin(nθ)+cos(-nθ)+isin(-nθ)=cos(nθ)+ isin(nθ)+cos(nθ)- isin(nθ) (by trig relationships)=2cos(nθ)

Related Further Mathematics A Level answers

All answers ▸

Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


How do I find the square root of a complex number?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences