Given that x = 4sin(2y + 6), Find dy/dx in terms of x

x = 4sin(2y + 6)dx/dy = 4(2)cos(2y + 6)dx/dy = 8cos(2y + 6) ==> dy/dx = 1/8cos(2y + 6)sin2(2y + 6) + cos2(2y + 6) = 1cos(2y + 6) = √(1 - sin2(2y + 6))cos(2y + 6) = √(1 - x2/16)Hence, our final answer is:dy/dx = 1/8(√(1 - x2/16))dy/dx = 1/[2(16 - x2)1/2]

Answered by Shubham P. Maths tutor

7858 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do you differentiate in optimisation questions?


Split 1/x^2-1 into partial fractions


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences