A buffer solution was formed by mixing 20.0 cm^3 of sodium hydroxide solution of concentration 0.100 mol dm^–3 with 25.0 cm^3 of ethanoic acid of concentration 0.150 mol dm^–3. CH3COOH + NaOH---CH3COONa + H2O Calculate the pH of this buffer solution.

Ka for ethanoic acid = 1.74 × 10–5 mol dm–3 also given in question. moles = concentration x volume / 1000Ka = [H+] [A-]/[HA]pH = -log [H+]
initial moles:NaOH: 20x0.1/1000 = 0.002molCH3COOH: 25 x 0.15 / 1000 = 0.00375
NaOH< CH3COOH and react in 1:1 ratio, so all NaOH reacts.
final moles:CH3COO- Na+ = initial moles NaOH = 0.002molCH3COOH = 0.00375 - 0.002 = 0.00175
final concentrations (remember to use total volume of 45 cm3)[CH3COO- Na+] = 1000 x 0.002 / 45 = 0.04444 moldm-3 = [A-][CH3COOH] = 1000 x 0.00175 /45 = 0.03889 moldm-3 = [HA]from Ka:[H+] = Ka [HA] / [A-] = 1.74 x 10 -5 x 0.03889 / 0.04444 = 1.523 x 10 -5pH = -log [H+] = 4.82


Answered by Chemistry tutor

8897 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain the trend in Ionisation energy when moving across a period and down a group


In terms of structure and bonding explain why the boiling point of magnesium is much higher than that of bromine?


Explain why transition metal compounds are often coloured in solution.


Give the IUPAC name of CH3CH2CH2CH2CH(OH)CN and describe why the formation of this molecule creates 2 enantiomers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences