A buffer solution was formed by mixing 20.0 cm^3 of sodium hydroxide solution of concentration 0.100 mol dm^–3 with 25.0 cm^3 of ethanoic acid of concentration 0.150 mol dm^–3. CH3COOH + NaOH---CH3COONa + H2O Calculate the pH of this buffer solution.

Ka for ethanoic acid = 1.74 × 10–5 mol dm–3 also given in question. moles = concentration x volume / 1000Ka = [H+] [A-]/[HA]pH = -log [H+]
initial moles:NaOH: 20x0.1/1000 = 0.002molCH3COOH: 25 x 0.15 / 1000 = 0.00375
NaOH< CH3COOH and react in 1:1 ratio, so all NaOH reacts.
final moles:CH3COO- Na+ = initial moles NaOH = 0.002molCH3COOH = 0.00375 - 0.002 = 0.00175
final concentrations (remember to use total volume of 45 cm3)[CH3COO- Na+] = 1000 x 0.002 / 45 = 0.04444 moldm-3 = [A-][CH3COOH] = 1000 x 0.00175 /45 = 0.03889 moldm-3 = [HA]from Ka:[H+] = Ka [HA] / [A-] = 1.74 x 10 -5 x 0.03889 / 0.04444 = 1.523 x 10 -5pH = -log [H+] = 4.82


Answered by Chemistry tutor

9402 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you form a Born-Haber cycle?


A sample of strontium has a relative atomic mass of 87.7 and consists of three isotopes, 86Sr, 87Sr and 88Sr. In this sample, the ratio of abundances of the isotopes 86Sr: 87Sr is 1:1. Calculate the percentage abundance of the 88Sr isotope in this sample


Elements in the Periodic Table often show periodic trends. Describe and explain the periodic trend in atomic radius and electronegativity from Na to Cl.


The bond angle in a molecule of ammonia (NH3) is 107 degrees so why, when part of a transition metal complex is the bond angle 109.5 degrees.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning