Answers>Maths>IB>Article

Differentiate y = e^(x^2 - 3x).

This question is an example of the chain rule for differentiating. 

Firstly, identify the inner function. In this case, it is x- 3x. This function must be differentiated first:

d/dx (x2 - 3x) = 2x - 3

Secondly, identify the outer function. In this case, it is ez, where z = x2 - 3x. This function must be differentiated second:

d/dz (ez) = e 

The final differentiated result is the derivative of the inner function multiplied by the derivative of the outer function:

dy/dx = (2x - 3)e= (2x - 3)ex^2 - 3x

Answered by Ellie S. Maths tutor

11447 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How does proof by induction work?


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


What is the most difficult topic in HL Maths?


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences