Integrate 1/(1 - 3*x) with respect to x

First substitute: u = 1 - 3xNext calculate: du/dx = -3 .... therefore dx = (-1/3) * duNow re-arrange the expression: Integrate 1/u * ( -1/3)*duNext recall the integral of 1/x is the natural logarithm, and remember the constant! The integral is: (-1/3)*ln(u) + cNow replace u: (-1/3)*ln(1-3x) + c

Answered by Neil M. Maths tutor

2669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x^2 + y^2 = 10 and x + 2y = 5


The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences