Integrate 1/(1 - 3*x) with respect to x

First substitute: u = 1 - 3xNext calculate: du/dx = -3 .... therefore dx = (-1/3) * duNow re-arrange the expression: Integrate 1/u * ( -1/3)*duNext recall the integral of 1/x is the natural logarithm, and remember the constant! The integral is: (-1/3)*ln(u) + cNow replace u: (-1/3)*ln(1-3x) + c

NM
Answered by Neil M. Maths tutor

3167 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


Find the value of (cos(x) + sec(x))^2 with respect to x when evauated between pi/4 and 0


How would I write (1+4(root)7)/(5+2(root)7) in the form m + n(root)7, where m and n are integers?


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning