Integrate 1/(1 - 3*x) with respect to x

First substitute: u = 1 - 3xNext calculate: du/dx = -3 .... therefore dx = (-1/3) * duNow re-arrange the expression: Integrate 1/u * ( -1/3)*duNext recall the integral of 1/x is the natural logarithm, and remember the constant! The integral is: (-1/3)*ln(u) + cNow replace u: (-1/3)*ln(1-3x) + c

Answered by Neil M. Maths tutor

2571 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


Find the differential of f(x)=y where y=3x^2+2x+4. Hence find the coordinates of the minimum point of f(x)


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


How does a hypothesis test work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences