What is the coefficient of x^4 in the expansion of (x+3)^7

Start by expanding (a+b)7, using Pascal's Triangle or the binomial coefficient function to work out the coefficients:a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7 , where a=x and b=3As the question wants the coefficient of x3, we need to look for a3 . The expansion gives 35a3b4, so we must substitute values in for a and b. As stated earlier, a=3 and b=3, hence; 35a3b4 = 35 * x3 * 34 = 35 * 81 * x3 = 2835x3Therefore the coefficient of x3 is 2835

Answered by Josef W. Maths tutor

6610 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the solution to ln(3)+ln(x)=ln(6)


Find the derivative (dy/dx) of the curve equation x^2 -y^2 +y = 1.


How can I determine the stationary points of a curve and their nature?


AS Maths ->Expresss x^2 + 3x + 2 in the form (x+p)^2 + q... where p and q are rational number


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences