Prove that the difference of any two consecutive square numbers is odd

It is important we first define what we mean by an odd and even number.
An even number is any integer (whole number) number divisible by 2 so we can express any even number as 2x where x is any integer. When counting, every even number is followed by an odd number; 1,2,3... etc.
We can then express any odd number as 2x+1 as it will just be the next number after 2x i.e. add one.
Now any square number can be expressed as n^2 where n is any integer. The next square number can also be written as (n+1)^2 since it will be the square of the next number after n i.e. n+1.
As such, the difference of any two consecutive square numbers can be written as (n+1)^2 - n^2   
Expanding this we get (n^2 + 2n + 1) - n^2
This reduces to 2n+1 since the n^2 values cancel.
Since any odd number can be written in the form 2x+1  where x is any integer as earlier defined, 2n+1 is an odd number for any value of n which completes the proof.  

AH
Answered by Amar H. Maths tutor

68154 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angled triangle has one angle size 60 degrees, and hypotenuse of length 32cm. Calculate the length of the side opposite the 60 degree angle, to 3sf.


What does it mean to solve an equation for x?


How do you factorise quadratic equations by completing the square?


2x^2-7x+3=0, solve the following for the two solutions of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning