Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12

To find stationary points, we need to find dy/dx and set it equal to 0. Here we must use implicit differentiation: d/dx(x2) + d/dx(-xy) + d/dx(y2) = d/dx(12). Hence 2x - x(dy/dx) - y + 2y(dy/dx) = 0. Factorising: (2y - x)dy/dx = y - 2x . Hence dy/dx = (y - 2x)/(2y - x). dy/dx = 0: (y - 2x)/(2y - x) = 0 hence y - 2x = 0, y = 2x. Substituting this into the equation of the curve: x2 - x(2x) + (2x)2 = 12 So x2 - 2x2 + 4x2 = 12. Thus 3x2 = 12, x2 = 4 so x = 2 or -2. When x = 2, y = 4 and when x = -2, y = -4 since y = 2x at the stationary points. So the coordinates of the stationary points are (2,4) and (-2,-4).

AB
Answered by Adam B. Maths tutor

8754 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the set of values of x for which x(x-4) > 12


A circle with centre C has equation: x^2 + y^2 + 20x - 14 y + 49 = 0. Express the circle in the form (x-a)^2 +(y-b)^2=r^2. Show that the circle touches the y-axis and crosses the x-axis in two distinct points.


What are logarithms and how do you manipulate them?


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences