How can the average speedx of a gas molecule be derived?

To start with, some assumptions must be made to simplify the problem. Firstly the N molecules are assumed to have no size, be identical and not interact with each other. The second assumption is that the molecules move randomly and collide elastically with the container which is a cube of side length L.

When a particle collides with the container in the x direction, it rebound in the opposite direction at the same speed meaning the change in momentum is 2mvx. The momentum change of n particles is therefore 2nmvx.

The force exerted on the wall F=Impulse/Time so next we need to find the number of particles colliding with the wall per second. To do this, consider that all particles less than v metres from the wall will collide before one second. This means that any particle in the volume vxL2 will collide. However, only half the particles will be travelling towards the wall so a factor of 1/2 is needed. The number of particles in this volume is vxL2/2*N/L3=vxN/2L. This means F=2mvx+vxN/2L=mNvx2/L. As all directions are equivalent, v2=vx2+vy2+vz2=3vx2 so F=mNv2/3L.

The pressure is therefore P=F/L2=mNv2/3L3=mNv2/3V. This means that PV=Nmv2/3. Also, PV=NkBT so NkBT=Nmv2/3 so kBT=mv2/3. The average speed can now be found in terms of temperature and mass only: v=sqrt(3kBT/m).

Answered by Zac T. Physics tutor

2718 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


A small ball is projected with speed 15 m/s at an angle of 60 degrees above the horizontal. Find the distance from the point of projection of the ball at the instant when it is travelling horizontally.


Why is an object moving in a circle at a constant speed said to be accelerating?


A student has a mass of 80kg. How much would the student weigh on the surface of the Moon?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences