How would you differentiate ln(sin(3x))?

To answer this question we require the chain rule, which states that dy/dx=(dy/du)*(du/dx)

To use this formula in our question, we can let y=ln(sin(3x))=ln(u) where u=sin(3x)

Firstly, using a standard result we have dy/du=1/u

Secondly, we must work out du/dx. Another standard result is that d/dx(sin(ax))=acos(ax) for any constant number a. This means du/dx=3cos(3x)

Putting the two parts together, we find that our answer, given by dy/dx, is equal to

3*cos(3x)1/u=(3cos(3x))/(ln(sin(3x)))

HD
Answered by Hannah D. Maths tutor

10668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When solving a trigonometric equation, like sin(x) = -1/3 for 0 ≤ x < 2π, why do I get an answer outside the range? Why are there many correct answers for the value of x?


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


Write 36% as a fraction in its simplest terms.


If I have a picture of a graph f(x), how can I draw what |f(x)| and 3f(x-2) look like?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences