A curve C has the equation y=5sin3x + 2cos3x, find the equation of the tangent to the curve at the point (0,2)

Firstly, you need to differentiate the curve y. Using the equation dy/dx of sinkx= kcoskx, you need to differentiate 5sin3x first. So, as k=3 in this example, the answer is 5(3cos3x) which is equal to 15cos3x. If we then look at the 2cos3x, we now have to use the equation: dy/dx of coskx= -ksinkx; k= 3 in this example too so the answer would be 2(-3sin3x) which is equal to -6sin3x. So, if we put that together, dy/dx= 15cos3x - 6sin3x. Now, we have to find the equation of the tangent of the curve at the point (0,2). The general equation of a line is y= mx + c. We will start by finding m which is the gradient. To do this we must substitute the x value (0) into the differentiation that we just calculated. So this would be 15cos3(0) - 6sin3(0). This is equal to 15 which is our gradient (m). To find c we must now substitute the x, y and m values into the y= mx + c equation: 2= 15(0) + c, therefore c is equal to 2. If we now substitute our m and c values into the general equation y= mx + c, the answer to the question is y= 15x + 2.

Related Maths A Level answers

All answers ▸

The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


Find the coordinates of the centre C and the length of the diameter of a circle with the equation (x-2)^2 + (y+5)^2 = 25


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


Given that y = x^4 + x^(1/3) + 3, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences