A curve C has the equation y=5sin3x + 2cos3x, find the equation of the tangent to the curve at the point (0,2)

Firstly, you need to differentiate the curve y. Using the equation dy/dx of sinkx= kcoskx, you need to differentiate 5sin3x first. So, as k=3 in this example, the answer is 5(3cos3x) which is equal to 15cos3x. If we then look at the 2cos3x, we now have to use the equation: dy/dx of coskx= -ksinkx; k= 3 in this example too so the answer would be 2(-3sin3x) which is equal to -6sin3x. So, if we put that together, dy/dx= 15cos3x - 6sin3x. Now, we have to find the equation of the tangent of the curve at the point (0,2). The general equation of a line is y= mx + c. We will start by finding m which is the gradient. To do this we must substitute the x value (0) into the differentiation that we just calculated. So this would be 15cos3(0) - 6sin3(0). This is equal to 15 which is our gradient (m). To find c we must now substitute the x, y and m values into the y= mx + c equation: 2= 15(0) + c, therefore c is equal to 2. If we now substitute our m and c values into the general equation y= mx + c, the answer to the question is y= 15x + 2.

Answered by Maths tutor

4325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


Does the equation: x^2+5x-6 have two real roots? If so what are they?


How can I determine the characteristics of a curve on an x-y set of axis (eg. points of intersection, stationary points, area under graph)?


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning