Solve the simultaneous equations x + y = 2 and x^2 + 2y = 12

x+y=2 (1) x2+2y=12 (2) As we are dealing with x2 we’re going to have to use substitution to solve this set of simultaneous equations. From the first equation, we can rearrange to make y the subject: y=2-x (3)Now, we can substitute our new equation (3) into equation (2) to eliminate y: x2 + 2(2-x) = 12. By expanding we get: x2 + 4-2x = 12. To solve for x we need to make the equation equal to 0: x2-2x-8=0. To factorise, we need 2 numbers that multiply to make -8 and add to make -2; these 2 numbers are -4 and 2. Therefore x2-2x-8=0 is equal to (x-4)(x+2)=0. Solving for x we get x=4 and x=-2. We can now substitute these into our equation (3) to find y: y=2-4=-2 and y=2-(-2)=4. So our 2 pairs of answers are: x=4, y=-2 and x=-2, y=4

Answered by Ayesha K. Maths tutor

4377 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(x+2)/(x-3) - (x-1)/(x+3) can be written in the form (ax+b)/(x^2-9). Work out the value of a and the value of b.


X is a prime number higher than the square of 5 and lower than the square of 7. What are the smallest and largest possible values for X?


Circle the number that is closest in value to (1.1)/(0.0204) [From selection of 5, 6, 50, 60] [Edit of 2018 Paper 1 Q4]


How do I divide fractions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences