Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x

5cos3x = 5cosxFirstly -5cosx from both sides and divide through by 5We have:cos3x-cosx = 0We can factorise this:cosx(cos2x - 1) = 0 For this to be true either:cosx = 0 or cos2x = 1for cosx = 0This occurs at pi/2 and 3pi/2.for cos2x = 1We have cosx = +/- 1 (do not forget to take +/- sqrt)This occurs at 0, pi, 2pi.Our solutions are:x = 0, pi/2, pi, 3pi/2, 2pi

Answered by Georgiana C. Maths tutor

3739 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


Show that 12coshx - 4sinhx = 4e^x + 8e^-x


Use simultaneous equations to find the points where the following lines cross: 3x - y = 4 and x^2 + 7y = 5


Simplify fully: (5 +√7)/ (2+√7)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences