The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C

y = 1/2x^3 - 9x^3/2 + 8/x + 30y = 1/2x^3 - 9x^3/2 + 8x-1 + 30dy/dx = 3/2x^2 - 27/2x^1/2 - 8x^-2 + 0dy/dx = 3/2x^2 - 27/2x^1/2 - 8/x^2substitute x=4 into equation for yy = 1/2(4)^3 - 9(4)^3 + 8/4 +30y = 32 - 72 + 2 + 30y = -8therefore P lies on C

Answered by Maths tutor

8976 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

express (3x + 5)/(x^2 + 2x - 15) - 2/(x - 3) as a single fraction its simplest form


Differentiate y=x^2+4x+12


Solve the simultaneous equations: x+y =2; x^2 + 2y = 12


I can differentiate exponentials (e^x), but how can I differentiate ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning