The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C

y = 1/2x^3 - 9x^3/2 + 8/x + 30y = 1/2x^3 - 9x^3/2 + 8x-1 + 30dy/dx = 3/2x^2 - 27/2x^1/2 - 8x^-2 + 0dy/dx = 3/2x^2 - 27/2x^1/2 - 8/x^2substitute x=4 into equation for yy = 1/2(4)^3 - 9(4)^3 + 8/4 +30y = 32 - 72 + 2 + 30y = -8therefore P lies on C

Answered by Maths tutor

8592 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate with respect to x the function f(x)= xln(x)


Split 1/x^2-1 into partial fractions


A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


Solve the simultaneous equation: y+4x+1=0 y^2+5x^2+2x=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences