Find the gradient, length and midpoint of the line between (0,0) and (8,8).

let x1 = 0, y1 = 0 in (0,0) and let x2 = 8 and y2 = 8 in (8,8). To find the gradient, we would do (y2 - y1)/(x2-x1) = 1. To find the length, we would do the square root of the following: (y2-y1)^2 + (y2-y1)^2 which gives us the square root of 128 and this simplifies to 8sqrt(2). For the midpoint, we would do ((x1+x2)/2,(y1+y2)/2) which gives (4,4).The reason why I have opted to use x1, x2, y1 and y2 is to generalise it for any numbers we are given.

JA
Answered by Jason A. Maths tutor

5839 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


You are given the equation of the line y=x^3+x^2-2x. Find the stationary points of the curve and determine the maximum and minimum points and find where it crosses the x-axis and thus sketch the graph


Why can't you divide something by 0?


Find dy/dx when y = x^2(cos(x)).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning