Find the gradient, length and midpoint of the line between (0,0) and (8,8).

let x1 = 0, y1 = 0 in (0,0) and let x2 = 8 and y2 = 8 in (8,8). To find the gradient, we would do (y2 - y1)/(x2-x1) = 1. To find the length, we would do the square root of the following: (y2-y1)^2 + (y2-y1)^2 which gives us the square root of 128 and this simplifies to 8sqrt(2). For the midpoint, we would do ((x1+x2)/2,(y1+y2)/2) which gives (4,4).The reason why I have opted to use x1, x2, y1 and y2 is to generalise it for any numbers we are given.

JA
Answered by Jason A. Maths tutor

6016 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the integral of 1+3 root x


At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


How do I rationalise the denominator of a fraction which consists of surds?


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning