If p = (3a + 5)/(4 - a), make a the subject of the formula

You want to end up an equation that show what a is in terms of p. To make things simpler, we want to get rid of the fraction on the right by multiplying both sides by (4 - a). If we do this we end up with:
p(4 - a) = 3a + 5
Simplifying the right, you get:
4p - pa = 3a + 5
You want all the a's on one side and the p's on the other, so you can add pa to both sides or subtract 3a , Let's add pa to both sides as positive numbers are nicer to deal with. Then you want everything else that isn't an a on the other side, so take away 5. No we have: 3a + pa = 4p - 5
Next you want to factorise the expression on the right by taking out a factor of a
a(3 + p) = 4p - 5
Divide both sides by 3 + p to find an expression for a
a = (4p - 5)/(3 + p), final answer


Answered by Ahmed I. Maths tutor

2996 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out 2(3/4)*1(5/7). Give your answer in mixed number form.


How do you factorise a quadratic equation into the form (x+A)(x+B), for example x²+x-6 =0?


Make x the subject of the formula when: y = 6-2x / 8


Two dice are thrown at the same time. What is the probability that the sum of the numbers on the dice is greater than 7?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences