Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.

The relevant equation to use in solving this problem, from Newton's law of gravitation, is Force = ( universal constant of gravitation x mass of earth x mass of moon)/ (distance between earth and moon squared), or F = GmEarthmMoon/r 2.The first step would be to ensure all units for the data provided are in SI units of metres (distances) and kilograms (mass). The distance is stated in km, so this will need to be changed to 3.844 x108 m. The masses are already in kg so are fine to use as given. Then, the numbers get put into the equation as follows; F = (6.67 x10-11 x 6 x1024 x 7.3 x1022)/(3.844 x108)2= 1.98 x 1020 Newtons, N. (making sure to use the correct unit for force, which comes about when all SI units are used in equation.

AS
Answered by Adam S. Physics tutor

30075 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.


In a lab a hydrogen spectral line is observed to have a wavelength of 656nm. This line is observed in a distance galaxy to have a wavelength of 661nm, what is the recessional velocity of the galaxy?


An internet shopping company is planning to use drones to deliver packages.During a test the drone is hovering at a constant height above the ground.The mass of the drone is 5·50 kg. The mass of the package is 1·25 kg. See questions below


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning