Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.

The relevant equation to use in solving this problem, from Newton's law of gravitation, is Force = ( universal constant of gravitation x mass of earth x mass of moon)/ (distance between earth and moon squared), or F = GmEarthmMoon/r 2.The first step would be to ensure all units for the data provided are in SI units of metres (distances) and kilograms (mass). The distance is stated in km, so this will need to be changed to 3.844 x108 m. The masses are already in kg so are fine to use as given. Then, the numbers get put into the equation as follows; F = (6.67 x10-11 x 6 x1024 x 7.3 x1022)/(3.844 x108)2= 1.98 x 1020 Newtons, N. (making sure to use the correct unit for force, which comes about when all SI units are used in equation.

Related Physics Scottish Highers answers

All answers ▸

An exoplanet, 0.01% the mass of the Sun, orbits a star 2 times the mass of the Sun at a distance of 1AU = 1.5x10^8 km. Using Newton's Law of Universal Gravitation, determine the force between the exoplanet and the star. Mass of Sun = 2x10^30kg.


Explain the difference between elastic and inelastic collisions.


A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


A tall 2 meter tall basketball player shoots for the net that stands 3 meters from the ground. If he throws he ball from head height at an angle of 60 degrees and the ball travels at 10 meters per second, how far away is the hoop?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences