The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?

Our task is to find out the value of k, which we can determine from the equations for velocity or acceleration if we know 2 of the 3 variables in either equation. We are given the value of acceleration at t(20)=1.3ms^-1, so we should substitute these values into the equation for acceleration, which we can calculate by differentiating the velocity: a = k + 0.06t. This gives us 1.3 = k + 0.06(20) -> 1.3 = k + 1.2 -> 0.1 = k.

LM
Answered by Lascelle M. Maths tutor

8070 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


Find dy/dx when y = x(4x + 1)^1/2


What is exactly differentiation?


use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences