The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?

Our task is to find out the value of k, which we can determine from the equations for velocity or acceleration if we know 2 of the 3 variables in either equation. We are given the value of acceleration at t(20)=1.3ms^-1, so we should substitute these values into the equation for acceleration, which we can calculate by differentiating the velocity: a = k + 0.06t. This gives us 1.3 = k + 0.06(20) -> 1.3 = k + 1.2 -> 0.1 = k.

Answered by Lascelle M. Maths tutor

7640 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


Prove the Quotient Rule using the Product Rule and Chain Rule


Express (3-5x)/(x+3)^2 in the form A/(x+3) + B/(x+3)^2


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences