Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.

1.) Find the integral of each term. --> [2x +7ln(x)]. --> Uses standard integrals--> e.g. that the integral of 1/x is ln(x).
2.) substitute values into the integral. --> [2(e)+ 7ln(e)]- [2(1)+7ln(1)] --> (2e +7)- (2+7(0)) --> uses knowledge about natural logarithms, e.g. that ln(1)= 0 and ln(e)= 13.) present answer. --> ANSWER= 2e +5. --> Presented in the simplest possible form, in exact terms (as required by the question).

Answered by Maths tutor

3289 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=sin(x)*x^2.


(x+2)(x-3)


Show that 2sin(2x)-3cos(2x)-3sin(x)+3=sin(x)(4cos(x)+6sin(x)-3)


A curve has parametric equations -> x = 2cos(2t), y = 6sin(t). Find the gradient of the curve at t = π/3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences