Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)

Step 1 Use Implicit differentiation with respect to x and y - 6x^2+3y + 3x(dy/dx) - 2/y^2(dy/dx) = 0Step 2 Write the equation as dy/dx =... - dy/dx = (6x^2 + 3y)/(2/y^2 - 3x)Step 3 Input (1,-1) into the equation to find gradient of tangent. - Gradient of tangent = -3Step 4 Use knowledge the knowledge that the gradient of the normal is equal to the negative reciprocal of the tangent. - Gradient of Normal = 1/3Step 5 Write the equation of the normal in point slop form- y+1 = 1/3(x-1)Step 6 Rearrange so it is in the form y=mx+c - y=1/3(x)-4/3















Answered by Maths tutor

2917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0 (a) Find (i) dy/d x (ii) d^2y/dx^2 (b) Verify that C has a stationary point when x = 4 (c) Determine the nature of this stationary point, giving a reason for your answer.


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


What are the stationary points of the curve (1/3)x^3 - 2x^2 + 3x + 2 and what is the nature of each stationary point.


A medical test will be positive for 0.05% of people and negative for everyone else. Suppose a hospital will test 4000 patients each day. Use an appropriate approximation to find the probability that 5 people test positive tomorrow. (5SF)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences