The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.

Note here: u_n indicates u subscript n.

(a) u_1 = 48 and the ratio, r = 0.6

Using a calculator, u_2 = 48 x 0.6 = 28.8

u_3 = 28.8 x 0.6 = 17.28

(b) We have the known result that the sum to infinity of a geometric series is a/(1-r) where a is the first term and r is the common ratio.

Therefore, the sum to infinity here is 48/(1-0.6) = 48/0.4 = 120

(c) We now want the sum from the fourth term to infinity. We can use the same formula as before, but replacing the first term which we called a with the fourth term of the sequence.

Calculating the fourth term: u_4 = 17.28 x 0.6 = 10.368

Therefore, our sum is equal to 10.368/(1-0.6) = 10.368/0.4 = 25.92

Answered by Felix S. Maths tutor

11773 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using partial fractions find the integral of (15-17x)/((2+x) (1-3x)^2 )


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


Using Pythagoras' theorem, show that sin^2(x)+cos^2(x)=1 for all x.


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences