Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form

y = 3x2 + 6x1/3 + (2x3/3 - 7/3)x-1/2Using the multiplication rule for indices y = 3x2 + 6x1/3 + (2/3)x5/2 - (7/3)x-1/2Then differentiate each term with respect to x to find dy/dxdy/dx = 6x + 2x-2/3 + (10/6)x3/2 + (7/6)x-3/2Then simplify each term, as requested in the questiondy/dx = 6x + 2/x2/3 + (5/3)x3/2 + 7/6x3/2

Answered by Maths tutor

6282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation x^2+ kx + 8 = k has no real solutions for x. Show that k satisfies k^2 + 4k < 32.


A curve C has equation y = x^2 − 2x − 24sqrt x, x > 0. Prove that it has a stationary point at x=4.


The curve C has equation: (x-y)^2 = 6x +5y -4. Use Implicit differentiation to find dy/dx in terms of x and y. The point B with coordinates (4, 2) lies on C. The normal to C at B meets the x-axis at point A. Find the x-coordinate of A.


Express 1/(1+2x)(1-x) in partial fractions


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning