Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form

y = 3x2 + 6x1/3 + (2x3/3 - 7/3)x-1/2Using the multiplication rule for indices y = 3x2 + 6x1/3 + (2/3)x5/2 - (7/3)x-1/2Then differentiate each term with respect to x to find dy/dxdy/dx = 6x + 2x-2/3 + (10/6)x3/2 + (7/6)x-3/2Then simplify each term, as requested in the questiondy/dx = 6x + 2/x2/3 + (5/3)x3/2 + 7/6x3/2

Related Maths A Level answers

All answers ▸

Write down the values of (1) loga(a) and (2) loga(a^3) [(1) log base a, of a (2) log base a of (a^3)]


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences