Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.

For this question, we want to start by finding the possible values of a from the first equation and then using that to give us information about b from the second equation.

Now, the condition that a^2 < 4 actually gives us two pieces of information (a way to remember this is that for inequalities, squared gives us two things). We have that a < 2 but also that a >  -2 since for example, (-3)^2 = 9 which is larger than 4. Therefore, we have -2 < a < 2.

Rearranging the second equation for b, we get b = (8-a)/2. Therefore, putting in our values for a, we get that the maximum value of b is (8-(-2))/2 = 10/2 = 5 and the minimum value of b is (8-2)/2 = 6/2 = 3. Since the inequality for a does not include 2 and -2, we do not include 3 and 5 for b and so we get the answer 3 < b < 5.

Related Further Mathematics GCSE answers

All answers ▸

(x+4)((x^2) - kx - 5) is expanded and simplified. The coefficient of the x^2 term twice the coefficient of the x term. Work out the value of k.


How to solve the inequality 1 - 2(x - 3) > 4x


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Solving equations with unknown in both sides


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences