Why does integration by parts work?

Let's consider the form of the formula we use for integration by parts: the integral of u * dv/dx = uv - the integral of v * du/dx. We know that integration is the inverse of differentiation, so we should be able to differentiate both sides to get back to u * dv/dx. The left hand side of this equation obviously satisfies this. d/dx(uv - integral of v * du/dx) = d/dx(uv) - d/dx(integral of v * du/dx).
For d/dx(uv), we'll use the product rule: d/dx(uv) = du/dx * v + u * dv/dx. For d/dx(integral of v * du/dx), we'll just use the fact that integration is the inverse of differentiation, d/dx(integral of v * du/dx) = v * du/dx. So, d/dx(uv) - d/dx(integral of v * du/dx) = (du/dx * v + u * dv/dx) - (du/dx * v) = u * dv/dx. Since the derivative of uv - integral of v * du/dx = u * dv/dx, the integral of u * dv/dx = uv - integral of v * du/dx.

TS
Answered by Tomas S. Maths tutor

3568 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y^3+2xy+x^2-5=0. Find dy/dx.


The rate of decay of the mass is modelled by the differential equation dx/dt = -(5/2)x. Given that x = 60 when t = 0, solve the quation for x in terms of t.


How do I express complicated logs as single logarithms?


Prove that (root)2 is irrational


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences