Why does integration by parts work?

Let's consider the form of the formula we use for integration by parts: the integral of u * dv/dx = uv - the integral of v * du/dx. We know that integration is the inverse of differentiation, so we should be able to differentiate both sides to get back to u * dv/dx. The left hand side of this equation obviously satisfies this. d/dx(uv - integral of v * du/dx) = d/dx(uv) - d/dx(integral of v * du/dx).
For d/dx(uv), we'll use the product rule: d/dx(uv) = du/dx * v + u * dv/dx. For d/dx(integral of v * du/dx), we'll just use the fact that integration is the inverse of differentiation, d/dx(integral of v * du/dx) = v * du/dx. So, d/dx(uv) - d/dx(integral of v * du/dx) = (du/dx * v + u * dv/dx) - (du/dx * v) = u * dv/dx. Since the derivative of uv - integral of v * du/dx = u * dv/dx, the integral of u * dv/dx = uv - integral of v * du/dx.

Answered by Tomas S. Maths tutor

3089 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences