Given g(x) = 4* sin (3*x), find the value of g'(pi/3).

Using the table of standard derivatives given at the beginning of the Higher Paper we have, for f(x) = sin(ax), f'(x) = a * cos (ax)and so with this we have, g(x) = 4 * sin(3x), g'(x) = 4 * 3 * cos(3x) = 12 * cos(3x).Evaluating g'(x) at x = pi/3 we have, g'(pi/3) = 12 * cos (3(pi/3)) = 12 * cos(pi) = 12 * (-1) = -12.

Answered by Romy M. β€’ Maths tutor

936 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers β–Έ

Find an equation for the straight line AB , giving your answer in the form px+qy=r, where p, q and r are integers. Given that A has co-ordinates (-2,4) and B has co-ordinates (8,-6)


Show that (π‘₯ βˆ’ 1) is a factor of 𝑓(π‘₯)=2π‘₯^3 + π‘₯^2 βˆ’ 8π‘₯+ 5. Hence fully factorise 𝑓(π‘₯) fully.


How do you solve integrals which are the result of a chain rule e.g. the integral of sin(2x+1)


Differentiate 5x^2 - 7x +9


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

Β© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences