What method should I use to differentiate equations with an x as the power of a number. E.g. 2^x

Take the log of both sidesln(y) = ln(2^x)This can be re-written as:ln(y) = ln(2)*xTake the exponent of both sidese^ln(y) = e^(ln(2)*x)Which gives:y = e^(ln(2)*x)Since ln(2) is a constant, apply the usual method when differentiating e^nxdy/dx = ln(2)*e^(ln(2)*x)From the question y=2^x which we re-wrote as e^(ln(2)*x) so substitute in giving he final answer:dy/dx = ln(2)*2^x

BT
Answered by Billy T. Maths tutor

3092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation: x^3 - 12x + 6 has two turning points. Use calculus to find the positions and natures of these turning points.


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.


If I am given a line, how do I find a line that is parallel to it? What about perpendicular?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning