The equation of a curve is y = ax^2 + 3x + c where a and b are integers. The curve has a minimum point at (1,1), find a and c

We start by trying to find out the values of a and c using the information about the minimum point. We know we can rearrange the right hand side by completing the square: y = a(x^2 + 3x)+cy = a(x+3/2a)^2+c-(9/(4a)) as y = a(x^2 + (3/a)x + 9/(4a2)) = ax^2 + 3x + 9/4a to ensure that this is equivalent to ax^2 +3x + c, we substract 9/4a and add c. we know that this is a minimum point so we need the square to be minimum as if the inside is negative, negative squared is positive and if it is positive, positive squared is positive the minimum must be where the square is 0. So x = -3/(2a) so 1 = -3/2a so a = -3/2 as -3/(2*(-3/2)) = 1. We now know that 1 = 0+c-(9/4(-3/2)), 1 = c + (9/6) so c = -3/6 .

Answered by Larbi E. Maths tutor

2114 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve this simultaneous equation for x: 3x + y = 10, x + y = 4


Jo wants to work out the solutions of x^2 + 3x – 5 = 0. Can the solution be worked out?


solve 125^(1/3)*2^(-3)


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences