The equation of a curve is y = ax^2 + 3x + c where a and b are integers. The curve has a minimum point at (1,1), find a and c

We start by trying to find out the values of a and c using the information about the minimum point. We know we can rearrange the right hand side by completing the square: y = a(x^2 + 3x)+cy = a(x+3/2a)^2+c-(9/(4a)) as y = a(x^2 + (3/a)x + 9/(4a2)) = ax^2 + 3x + 9/4a to ensure that this is equivalent to ax^2 +3x + c, we substract 9/4a and add c. we know that this is a minimum point so we need the square to be minimum as if the inside is negative, negative squared is positive and if it is positive, positive squared is positive the minimum must be where the square is 0. So x = -3/(2a) so 1 = -3/2a so a = -3/2 as -3/(2*(-3/2)) = 1. We now know that 1 = 0+c-(9/4(-3/2)), 1 = c + (9/6) so c = -3/6 .

Answered by Larbi E. Maths tutor

2248 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following fractional quadratic equation 14/(x^2-9)+1/(3-x)+(4-x)/(x+3)=7/(x+3), assuming x=/=+-3.


Expand (x+2)(x-3)(x+4)^2


A,B,C and D are points on a circle. ABCD is a square of side 7 cm. Work out the total area of the shaded regions. Give your answer correct to the nearest whole number.


If a cuboid of width and height-8m with a volume of 896m^3, work out the length of the cuboid and distance between two opposite points


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences