What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?

Right! Analysing the function "y" we can see that the graph should not exist below the "x" axis, since all the elements that form "y" as a function are positive, no matter what values "x" takes. Providing " x>0 " of course.Moreover, for "y=0", then "cos^2(x^2)/ x^2 = 0 ", hence "x^2= pi/2". For "x>0" the only value that satisfies our equation is " x = sqrt(pi/2)",which means the graph should look like ( can not attach a picture :( ).

DG
Answered by Dorian G. MAT tutor

939 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Can you please help with Question 5 on the 2008 MAT?


How many solutions does the equation 2sin^2(x) - 4sin(x) + cos^2(x) + 2 = 0 have in the domain 0<x<2pi


We define the digit sum of a non-negative integer to be the sum of its digits. For example, the digit sum of 123 is 1 + 2 + 3 = 6. Let n be a positive integer with n < 10. How many positive integers less than 1000 have digit sum equal to n?


Solve 8^x + 4 = 4^x + 2^(x+2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning