How can we simplify sqrt(48) - 6/sqrt(3) ?

Observing that 48 = 24 * 2 = 1222 = 443, we can write square root of 48 as being square root of 443, which means that sqrt(48) = 22sqrt(3).Now, we can multiply the new result 22sqrt(3) with sqrt(3) such that we can have a common denominator on the bottom.So, 22sqrt(3)sqrt(3)/sqrt(3) - 6/sqrt(3) = (22*3 - 6)/sqrt(3) = 6/sqrt(3).If we want our answer to look prettier, we can multiply again with sqrt(3) such that the new result could look as 6 * sqrt(3) /3 = 2sqrt(3).

Answered by Dorian G. Maths tutor

8302 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


Differentiate y = x^2 - 2x-3 + e^3x + 2ln(x)


Integrate (tanx)^2


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences