Integrate y=(x^2)cos(x) with respect to x.

This problem must be solved using integration by parts, since y is equal to the product of two functions of x. Let u=x^2, therefore u'=2x (u'=du/dx). Let v'=cos(x), therefore v=sin(x) (v'=dv/dx).Using the integration by parts formula: Intgrl(y)dx= uv - Intgrl(vu')dx (which is given on the A Level maths formula sheet), Intgrl(y)dx=x^2(sin(x)) - Intgrl(2x(sin(x))dx). We must apply the same rule again, since 2x(sin(x)) cannot be integrated directly. u=2x, u'=2v'=sin(x), v=-cos(x). Intgrl(y)dx=x^2(sin(x)) - [-2x(cos(x)) - intgrl(2(-cos(x))dx], -2cos(x) can now be integrated giving the final solution: Intgrl(y)=x^2(sin(x)) + 2x(cos(x)) - 2(sin(x)) + c.

Answered by Antony H. Maths tutor

3075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer


Find the set of values of k for which x^2 + 2x+11 = k(2x-1)


∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences