Solve the following simultaneous equations. 2x + 5y = -4. 7x + y = 19

Simultaneous equations have 2 or more unknowns. This simultaneous equation has 2 unknowns, and 2 equations. This simultaneous equation can be solved using elimination or substitution. Substitution involves substituting a value of one of the unknowns into one equation(for example, x=2) from the equation. Then you can find the other unknown (for example, y). The other way to solve this equation, and for this equation the simpler way, is elimination. This involves eliminating one of the unknowns from the equation. This is done by making the coefficient of the unknown the same in both equations. eq1: 2x + 5y = -4eq2: 7x + y = 19By multiplying eq2 by 5, this makes the coefficients of unknown y the same. eq2(*5): 35x +5y = 95Then we can eliminate the y unknown by subtracting eq1 from eq2(*5).35x + 5y = 95-2x + 5y = -4-----------------(35x - 2x) + (5y - 5y) = (95 - -4)33x = 99 x = 3Once we have found x, we substitute this into one of the original equations (eq1 or eq2). 2(3) + 5y = -46 + 5y = -45y = -4 -6 5y = -10y = -2

Answered by Aisling L. Maths tutor

2802 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Raya buys a van for £8500 plus VAT at 20%. Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio of the deposit Raya pays to the total of the 12 equal payments.


work out 3 1/2 - 2 1/3. Give answer as an improper fraction


What is 3.25 plus 3 and 3/4?


Make a the subject of the following equation, p=(3a+5)/(4-a)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences