Find the stationery points of x^3 + 3x^2 - 24x + 7 and determine whether the slope is increasing or decreasing at x=3.

i) We must differentiate the equation and set it equal to 0 to find stationery points:
dy/dx = 3x2 + 6x + 24=0 Note we can take out a factor of 3 x2+ 2x - 8=0 Factorise (x-2)(x+4)=0 State x values x=2 or -4
Now we have the x values of the stationery points of the curve, so we substitute into the original equation for the y values to getS.P=(2, -21) and (-4, 87).To find whether the curve is increasing or decreasing at x=3 substitute into the derivative and evaluate. If positive then its increasing and if negatuve then its decreasing, in this case it is negative so the curve is decreasing at x=3.

Answered by Michael M. Maths tutor

1146 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Show that (𝑥 − 1) is a factor of 𝑓(𝑥)=2𝑥^3 + 𝑥^2 − 8𝑥+ 5. Hence fully factorise 𝑓(𝑥) fully.


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


Point K(8,-5) lies on the circle x^2 +y^2 - 12x - 6y - 23. find the equation of the tangent at K.


Differentiate the equation: 3x^2 + 4x + 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences