Find the stationery points of x^3 + 3x^2 - 24x + 7 and determine whether the slope is increasing or decreasing at x=3.

i) We must differentiate the equation and set it equal to 0 to find stationery points:
dy/dx = 3x2 + 6x + 24=0 Note we can take out a factor of 3 x2+ 2x - 8=0 Factorise (x-2)(x+4)=0 State x values x=2 or -4
Now we have the x values of the stationery points of the curve, so we substitute into the original equation for the y values to getS.P=(2, -21) and (-4, 87).To find whether the curve is increasing or decreasing at x=3 substitute into the derivative and evaluate. If positive then its increasing and if negatuve then its decreasing, in this case it is negative so the curve is decreasing at x=3.

MM
Answered by Michael M. Maths tutor

1680 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

dy/dx = 6x^2 - 3x + 4 when y=14 x=2 Find y in terms of x


Find ∫((x^2−2)(x^2+2)/x^2) dx, x≠0


Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.


A circle has equation x^2+y^2-8x+10y+41=0. A point on the circle has coordinates (8,-3). Find the equation of the tangent to the circle passing through this point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning