Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0

Factorise the equation (the equation is quadratic in sin(x) )2 sin2(x) - sin(x) - 1 = 0(2sin(x) + 1)(sin(x) - 1) = 0Work out the solutions to the quadratic equation2sin(x) +1 = 0 or sin(x) - 1 = 0sin(x) = -1/2 or sin(x) = 1Determine the possible values of x, remembering to include any values generated due to the cyclic nature of the sin() functionsin(x) = 1 ---> x = 90sin(x) = -1/2 ---> x = -30 This value is outside of our given range, but by considering the sin curve, we can determine that x = 330 or x = 210Therefore the solutions to our equation are x=90 x=210 x=330

Answered by Maths tutor

5365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve for -pi < x < pi: tanx = 4cotx + 3


How do I differentiate y = ln(sin(3x))?


How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?


The finite region S is bounded by the y-axis, the x-axis, the line with equation x = ln4 and the curve with equation y = ex + 2e–x , (x is greater than/equal to 0). The region S is rotated through 2pi radians about the x-axis. Use integration to find the


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences