Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0

Factorise the equation (the equation is quadratic in sin(x) )2 sin2(x) - sin(x) - 1 = 0(2sin(x) + 1)(sin(x) - 1) = 0Work out the solutions to the quadratic equation2sin(x) +1 = 0 or sin(x) - 1 = 0sin(x) = -1/2 or sin(x) = 1Determine the possible values of x, remembering to include any values generated due to the cyclic nature of the sin() functionsin(x) = 1 ---> x = 90sin(x) = -1/2 ---> x = -30 This value is outside of our given range, but by considering the sin curve, we can determine that x = 330 or x = 210Therefore the solutions to our equation are x=90 x=210 x=330

Answered by Maths tutor

6110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the d(tan(x))/dx is equal to sec^2(x).


Prove that, if 1 + 3x^2 + x^3 < (1+x)^3, then x>0


How do you do integration by parts?


Evaluate gf(-5) for the functions f(x)=3x+7, g(x)=3x^2+6x-9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning