If two cars are moving, labelled car A and car B. Car A moves at 15 m/s and B at 10 m/s but car B also accelerated at 2 m/s/s. If the two both travel for ten seconds, which car will travel further?

Well for this question we can use the SUVAT equations. We'll see what values we have and what we're looking for.

So firstly we have the initial speed, often denoted usign the letter u. I'm going to write Au to mean the speed of car A.

Au=15 m/s

Bu=10 m/s

Now we also have the accelration, denoted by a. Car A doesn't change speed so its accelration is zero. Car B acceraltes by 2 m/s/s, so for every second that passes its speed increases by 2 m/s.

Aa=0

Ba=2

We also have the time taken, denoted by t. Both cars move for ten seconds so.

At=10

Bt=10

We're trying to find how far each one goes, this is denoted with the letter s.

As=?

Bs=?

With what we have we should use the SUVAT equation: s=ut+1/2at.

This equation uses the inital speed and the acceleration to find out how far an object has moved. Lets work it out for car A.

As=15 * 10+1/2 * 0 *10

As=15 * 10 = 150 m

Now for car B.

Bs=10*10 + 1/2 * 2 * 10

Bs= 100 + 10

Bs=110 m

So car A moves 150 m and car B moves 110 m, so car A moves further. 

Answered by Tom W. Physics tutor

5819 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Give examples of how the photoelectric effect supports the particle nature of light and defies the wave theory.


A rock has a mass of 100g and it is thrown across a pond at a speed of 30ms^-1. Calculate the de Broglie wavelength of the rock and explain whether you can see the wave produced.


Bernard says that a mass executing uniform circular motion is not accelerating as it's speed is not changing. Which parts of his statement are correct and which are false. For those which are false state why they are and give the correct version.


A pendulum of mass m is released from height h with a speed v at the bottom of its swing. a) What is the gravitational potential energy at height h and the kinetic energy at the bottom of its swing? b) Use conservation of energy to define the speed v.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences