How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.

From a given equation y = mx + c. Finding dy/dx allows us to see the gradient of the curve. In order to do this we can follow the formula:When y = xn , dy/dx = nxn-1 . Let us use this in a real scenario. Say we are given the equation y = 3x2 - 6x + 4. We can break this down into stages. First let us differentiate the 3x2. Here the n = 2. So we bring the 2 to the front and subtract 1 from the power: so differentiating 3x2 we have 6x. Now we do the same for -6x. Here the n = 1 so we bring to the 1 to the front and subtract 1 from the power: so differentiating -6x we have -6 (-6x0 = -6). Differentiating a constant results to cancelling that constant so differentiating the 4 results in 0 (as the gradient of a constant function is always 0). Putting all this together we have dy/dx = 6x -6. Now to find the value of x such that dy/dx = 0. We have our dy/dx as shown. We then set dy/dx = 0 and solve the equation. We therefore have 6x - 6 = 0. This implies that 6x = 6. So therefore x =1.

Answered by Sebastian A. Maths tutor

16993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equation: x^3 + 8x^2 + 4x - 48=0


For the function f(x) = 4x^3 -3x^2 - 6x, find a) All points where df/dx = 0 and b) State if these points are maximum or minimum points.


Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences